Chloride Homeostasis in Saccharomyces cerevisiae: High Affinity Influx, V-ATPase-dependent Sequestration, and Identification of a Candidate Cl− Sensor
نویسندگان
چکیده
Chloride homeostasis in Saccharomyces cerevisiae has been characterized with the goal of identifying new Cl- transport and regulatory pathways. Steady-state cellular Cl- contents ( approximately 0.2 mEq/liter cell water) differ by less than threefold in yeast grown in media containing 0.003-5 mM Cl-. Therefore, yeast have a potent mechanism for maintaining constant cellular Cl- over a wide range of extracellular Cl-. The cell water:medium [Cl-] ratio is >20 in media containing 0.01 mM Cl- and results in part from sequestration of Cl- in organelles, as shown by the effect of deleting genes involved in vacuolar acidification. Organellar sequestration cannot account entirely for the Cl- accumulation, however, because the cell water:medium [Cl-] ratio in low Cl- medium is approximately 10 at extracellular pH 4.0 even in vma1 yeast, which lack the vacuolar H(+)-ATPase. Cellular Cl- accumulation is ATP dependent in both wild type and vma1 strains. The initial (36)Cl- influx is a saturable function of extracellular [(36)Cl-] with K(1/2) of 0.02 mM at pH 4.0 and >0.2 mM at pH 7, indicating the presence of a high affinity Cl- transporter in the plasma membrane. The transporter can exchange (36)Cl- for either Cl- or Br- far more rapidly than SO4=, phosphate, formate, HCO3-, or NO3-. High affinity Cl- influx is not affected by deletion of any of several genes for possible Cl- transporters. The high affinity Cl- transporter is activated over a period of approximately 45 min after shifting cells from high-Cl- to low-Cl- media. Deletion of ORF YHL008c (formate-nitrite transporter family) strongly reduces the rate of activation of the flux. Therefore, Yhl008cp may be part of a Cl(-)-sensing mechanism that activates the high affinity transporter in a low Cl- medium. This is the first example of a biological system that can regulate cellular Cl- at concentrations far below 1 mM.
منابع مشابه
Isolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae
In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...
متن کاملVacuolar H(+)-ATPase, but not mitochondrial F(1)F(0)-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae.
Salt tolerance in Saccharomyces cerevisiae is a complex trait, involving regulation of membrane polarization, Na(+) efflux and sequestration of Na(+) in the vacuole. Since transmembrane transport energized by H(+)-adenosine triphosphatases (ATPases) is common to all of these tolerance mechanisms, the objective of this study was to characterize the responses of the plasma membrane H(+)-ATPase, v...
متن کاملInteraction between Sdo1p and Btn1p in the Saccharomyces cerevisiae model for Batten disease.
Juvenile Batten disease is an autosomal recessive pediatric neurodegenerative disorder caused by mutations in the CLN3 gene. The CLN3 protein primarily resides in the lysosomal membrane, but its function is unknown. We demonstrate that CLN3 interacts with SBDS, the protein mutated in Shwachman-Bodian-Diamond syndrome patients. We demonstrate that this protein-protein interaction is conserved be...
متن کاملChloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels.
GEF1 is a gene in Saccharomyces cerevisiae, which encodes a putative voltage-regulated chloride channel. gef1 mutants have a defect in the high-affinity iron transport system, which relies on the cell surface multicopper oxidase Fet3p. The defect is due to an inability to transfer Cu+ to apoFet3p within the secretory apparatus. We demonstrate that the insertion of Cu into apoFet3p is dependent ...
متن کاملZinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri.
The metal hyperaccumulator Arabidopsis halleri exhibits naturally selected zinc (Zn) and cadmium (Cd) hypertolerance and accumulates extraordinarily high Zn concentrations in its leaves. With these extreme physiological traits, A. halleri phylogenetically belongs to the sister clade of Arabidopsis thaliana. Using a combination of genome-wide cross species microarray analysis and real-time rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 131 شماره
صفحات -
تاریخ انتشار 2008